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AhstrpceThe extensive past publication concerning the calculation of the behavior of laminar natural 
convection plumes above energy sources contains numerous elements of uncertainty and confusion con- 
cerning proper variables, boundary conditions, and governing equations. This paper, for the fist time, 
states the problem in simplest variables, resolves various apparent redundancies in boundary conditions, 
and indicates the optimum way to formulate this boundary value problem. Results of numerical calcula- 
tions are given in terms of the present simple formulation for a wide range of values of Prandtl number, 
some not having been treated before. Results of experiments with plumes are included to emphasize the 
various properties of phune flow and to indicate that the large thickness of the boundary region in the 
range of stable laminar plumes (i.e. at relatively low local Grashof numbers) should encourage the cal- 

culation of higher order approximations of the flow. 

NOMENCLATURE 

specific heat of the fluid at constant 
pressure ; 
wire diameter ; 
nondimensional stream function ; 
gravitational acceleration ; 
Grashof number defined by equation 

(6); 
thermal conductivity of the fluid ; 
wire length ; 
vertical mass flow rate per unit length : 
variable as defined by equation (7) ; 
exponent defined by equation (7) ; 
Prandtl number ; 
heat generated by the line source; 
fluid temperature ; 
velocity component in x direction ; 
velocity component in y direction; 
vertical height above the line source ; 
horizontal distance from the mid-plane 
of the plume ; 
coefficient of volumetric thermal ex- 
pansion ; 
nondimensional temperature defined by 
equation (8) ; 
fluid density ; 

CL9 dynamic viscosity of the fluid ; 

% similarity variable defined by equation 

(4) ; 
$9 stream function defined by equation (5) ; 

v, kinematic viscosity of the fluid. 

Subscripts 

: Fujii; 7 in the mid-plane ; 

x, parameter based on distance x ; 
CO, in the undisturbed fluid. 

INTRODUCTION 

THIS paper concerns a natural convection plume 
arising from a horizontal line source of heat in 
quiescent surroundings of infinite extent. Zeldo- 
vich [l] in Russia in 1937 is the first one known 
to us to have ‘described the natural convection 
plumes arising from a point and from a hori- 
zontal line source of heat. The similarity methods 
used by Tolhnien [2], to solve for the turbulent 
flow velocity for the 2dimensional and axi- 
symmetric jet, and by Schlichting [3], to solve 
for the laminar flow velocities, were employed, 
and buoyancy and a similarity form of tempera- 
ture distribution were included. The treatment 
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by Zeldovich does not permit a velocity com- 
ponent normal to the plane of symmetry of the 
plume. However, using the conditions that all 
the terms of the x momentum equation are of 
the same order of magnitude and that the heat 
produced by the source crosses each horizontal 
plane, expressions are given for the velocity and 
temperature distributions for both the two 
dimensional and the radially symmetric cases 
for both laminar and turbulent flow. 

In 1941 Schmidt [4] investigated the be- 
havior of natural convection in a turbulent 
plume above a line and point source of heat. A 
similarity technique was used. The governing 
flow equations were solved by assuming a series 
solution in terms of the similarity variable. His 
experimental work included measuring the 
temperature and velocity above an electrically 
heated wire. 

H. Schuh, in 1948, in the report Boundary 
Layers of Temperature [5], presented a concise 
analysis of the natural convection boundary 
layer flow above plane and axially symmetric 
sources, giving boundary conditions, assuming 
the form of the similarity variable as originally 
proposed by Prandtl, and obtaining the coupled 
differential equations. Schuh refers to an earlier 
unpublished paper, in which he apparently 
solved the two point boundary value problem 
for a plume in a fluid having a Pr = 0.7. A 
numerical integration scheme was used, assum- 
ing starting values for velocity and temperature 
at the centerline and correcting these to satisfy 
imposed conditions at infinity. 

A study of natural convection from a point 
source was reported by Yih [6] in 1951. The 
coupled equations for axisymmetric laminar 
flow were solved, analytically, in closed form, 
for Prandtl numbers of 1 and 2. For the turbulent 
case he arrived at the temperature and velocity 
distributions by dimensional analysis coupled 
with experimental results from a bunsen burner 
flame. The temperature and velocity distribu- 
tions were measured by a thermocouple and a 
small anemometer, respectively. The applic- 
ability of the results in the laminar region was at 

best marginal since the source had a finite 
size and was also a source of mass. 

Yih [7], in 1952, presented a closed form 
solution for the temperature and velocity distri- 
bution for the laminar free convection flow 
above a line source of heat for Prandtl numbers 
213 and 713. 

Measurements of velocity and temperature 
distributions were performed by Rouse, Yih and 
Humphreys [S], in 1952, above a line of small 
gas flames. designed to simulate a line source of 
heat. Morton, Taylor and Turner [9], in 1956, 
published a study in which a light fluid was 
released in a tank of a heavier fluid, with a 
stable density gradient, to simulate a point 
source. Morton et al. also developed the 
laminar natural convection theory for main- 
tained and instantaneous sources for plumes in 
a variable density surrounding medium. This 
analysis has applicability to the smoke rising 
from chimneys in a compressible atmosphere. 

An experimental study on the weak con- 
vective heat transfer from line heated horizontal 
wires was performed by Collis and Williams [lo] 
in 1954. The temperature distribution about the 
wire was determined with an interferometer and 
the resulting distribution was in partial agree- 
ment with Langmuir’s stagnant film concept. 
The study is directed mainly towards hot wire 
anemometry applications where for a wire on 
the order of ONlO in. dia. and 1 in. long they 
found that l/d ratios must exceed 20000 for axial 
conduction through both the wire and gas to be 
negligible in the integrated effect. 

The first work in unsteady natural convection 
from heated horizontal wires was done in 1956. 
Ostroumov [ 111 experimentally investigated the 
startup phenomena of the plume, comparing the 
shape and the upward velocity of the “dome” in 
fluids of various Prandtl numbers. 

Mahony [12] in 1956 published an analytic 
study of natural convection heat transfer at small 
Grashof numbers from spheres and cylinders to 
determine the regions in which conduction or 
convection are the dominant heat transfer mode. 
It is shown that convection is negligible near the 
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body and becomes as important as conduction 
at distances from the body on the order of 
(Gr)-” where n varies from 4 to i, depending 
upon body shape. The method used to obtain 
the range of influence was to match the con- 
duction solution to the convection solution by 
equating the temperature and the temperature 
gradient in the vertical direction at some 
distance above the source. 

The problem of laminar natural convection 
above a linear heat source was again solved 
analytically by Sevruk [13] in 1958, assuming 
similarity variables and expressing the solution 
for the resulting ordinary differential equations 
in a power series. In 1959 Crane [14] derived the 
boundary layer equations for a plume above a 
long thin heated horizontal wire for the case of 
a gas whose coefficients of viscosity and thermal 
conductivity vary directly as the absolute 
temperature using, in effect, the convectional 
method of variable transformation. A series 
solution was determined for a particular Prandtl 
number of 5/9. Another particular Prandtl 
number case for a line source plume was 
analyzed by Spalding and Cruddace [ 151 in 196 1 
when they simplified and solved the governing 
differential equations for the natural convection 
plume in a medium of very high Prandtl number 
(Pr = cc). 

Lee and Emmons [16], in 1961, theoretically 
and experimentally investigated the behavior of 
the turbulent natural convection above a line of 
tire. Theoretically, the governing equations were 
solved by quadrature for a finite width source, 
employing the boundary layer assumptions and 
with the assumptions of lateral entrainment of 
air and similar Gaussian velocity and tempera- 
ture profiles at all heights. Experimentally, 
temperatures were measured with a resistance 
thermometer and the effect of radiative heat 
from a luminous flame were determined. The 
results were in good agreement with theory. 

To date, the most thorough treatment of the 
natural convection plume above a horizontal 
line and point heat source is the numerical 
analysis of Fujii [17] in 1963, to which later 

experimental papers refer for comparison. Fujii 
solved the two dimensional flow configuration, 
assuming boundary layer behavior, in closed 
form for a Prandtl number of 2, and for the 
axisymmetric case for a Pr = 1 and 2. He also 
used numerical integration to solve the differ- 
ential equations for Prandtl numbers of 0*01,0*7 
and 10. Because Fujii’s work encompasses all of 
the previous similarity ideas and sets of bound- 
ary conditions, the present method of solution 
along with boundary conditions will be com- 
pared with that of Fujii. 

The two most recent experimental investiga- 
tions into the velocity and temperatures profiles 
around a horizontal wire in air are those by 
Brodowicz and Kierkus [18] in 1966 and by 
Forstrom and Sparrow [19] in 1967. Brodowicz 
and Kierkus used suspended dust particles in 
air to measure velocities and an interferometer 
to determine the temperature distribution above 
a heated wire with an l/d = 3330. Their results 
are only in fair agreement with the plume theory. 

Forstrom and Sparrow used a thermocouple 
to measure the temperature distribution in air at 
various heat inputs and heights above a wire 
source. A regular laminar swaying motion of the 
entire plume was inferred from the regular 
variation with time of the centerline temperature 
(at higher heating rates, i.e. higher Grashof 
numbers). Irregular thermocouple output fluctu- 
ations were interpreted as the onset of turbu- 
lence. The data and results were interpreted to 
indicate that a virtual line source should be 
placed at two wire diameters below the actual 
wire in order to match the behavior of an actual 
plume from a wire with the similarity solution 
from a line source. The value for the temperature 
similarity variable at the centerline 4,-(O) deter- 
mined from measurements was about 15 per 
cent below the theory results of Fujii. 

The most recent work is an analytic study of 
the laminar free vertical jet, with buoyancy, by 
Brand and Lahey [20] in 1967. Even though a 
vertical jet would have mass flow and a vertical 
component of velocity at the origin, no addi- 
tional parameters were introduced and the 
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Table 1. 2-Dimensional and axisymmetric solutions 

____ ______ 
Author [Ref.] Configuration 

Schuh [S, unpublished] 

Yih [6] 
Yih [7] 
Sevruk [13] 

Crane [ 141 

Spalding and 
Cruddace [ 151 

Fujii [17] 

Brand and Lahey [20] 

formulation of the problem, along with the 
boundary conditions is, then, identical, but 
without references to, Fujii’s work nor to the 
extensive literature. In addition to the exact 
solutions found by Fujii, Brand and Lahey also 
found closed form solutions for Pr = 5/9 for the 
line source. Their numerical solutions include 
profiles for Prandtl numbers of 0*72,5 and 10. 

The many and varied studies concerned with 
the natural convection plume above a horizontal 
line source of heat prompted this paper, as an 
attempt to clarify the problem and to bring 
some order to the diverse formulations in 
previous studies. The different set of similarity 
variables used here enables a straightforward 
analysis of the problem, devoid of the vagueness 
of many past studies concerning the selection of 
the appropriate boundary conditions. Addi- 
tional numerical results are also presented. 
Methods of solution and cases solved in some of 
the past studies are summarized in Table 1. 

2-dimensional 
Axisymmetric 

Axisymmetric 
2dimensional 
2-dimensional 

2-dimensional 

2dimensional 

2dimensional 

Axisymmetric 

2dimensional 

Axisymmetric 

THEORETICAL ANALYSIS 

A. Baseflow equations 
The problem of natural convection flow 

resulting from an infinitely long horizontal line 
source of heat is considered as a two dimensional 

0.7 

0.7 

Numerical integration 

? 25 1 713 

Variable 

519 

Closed form 
Closed form 
Power series solution 

Series solution 

X’ 

2 
0~01,0~7,10 

1, 2 
0.01. 0.7. 10 

5/9, 2 
0.72, 1, 5, 10 

1, 2 
0.72. 5, 10 

Approximate closed form 

Closed form 
Numerical integration 
Closed form 
Numerical integration 

Closed form 
Numerical integration 
Closed form 
Numerical integration 

laminar, steady state flow. The coordinates and 
velocity variables are defined in Fig. 1. 

The governing momentum, energy and con- 
tinuity equations are simplified by the Boussinesq 
approximation and by boundary layer assump- 
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tions to the following form, in the absence of a 
stratification in the ambient temperature t,. 

!?+aV=, 
ax ay (3) 

The viscous dissipation term was not retained 
in equation (2). Gebhart [21] in 1962 demon- 
strated that the effect of viscous dissipation in 
natural convection becomes important only 
when gflx/c, = O(l), i.e. when the induced 
kinetic energy becomes appreciable compared 
to the amount of heat transferred. The quantity 
gfi/c, remains in the range 10-7-10-4 for fluids 
as different as liquid sodium, mercury, gases at 
ordinary temperature, water and viscous sili- 
cones, for the terrestrial level of gravity. 

Previous equations are reduced to two ordi- 
nary differential equations for certain boundary 
conditions by introducing a similarity variable 
~(x, y) and a stream function I,&, y) : 

(4) 

I// = 4v 
4 Gr,x 

J( > 
yj-- _f(rll (5) 

where 

Gr 
7 
x = gFJx3(t0 - L) 

v= . (6) 

The plume centerline temperature variation 
with x is initially assumed to be of the power 
law form Nx” so that 

t, - t, = NY. (7) 

It will be shown that this form of the centerline 
temperature distribution is the appropriate one 
for certain flow configurations because n may be 
chosen so that necessary conditions on the heat 

flow convected thermal energy, across hori- 
zontal planes, are satisfied. 

The nondimensional temperature excess ratio 
c#J(~) is defined as 

so that the local temperature excess is 

t - t, = Nxy(?/). (9) 

This procedure is in contrast with all earlier 
work on plumes, in which an undetermined 
constant arises in the definition of 4. The 
continuity equation (3) is satisfied by $ and 
equations (1) and (2) are transformed by (4), 
(5) and (9) into 

f”’ - (2n + 2)f’2 + (3 + n)ff” + 4 = 0 (10) 

4” + Pr[(n + 3)f4’ - 4nf’4] = 0. (11) 

Up to this point the analysis has been general. 
The equations apply for boundary layer flow 
over a vertical plate, for plane sources, and for 
plumes arising from a horizontal line source. 
The proper boundary conditions specify the 
particular case. The boundary conditions along 
with the values of N and n in equation (7) are 
determined for a plume by satisfying the neces- 
sary conditions on a plume flow resulting from 
a line source. The energy convected across any 
horizontal plane (at x) in the plume is 

Q = pc,T(t - t,J u dy. (12) 
-CQ 

In terms of the similarity variables Q becomes 

Q = v~/x$V(~)*X~+~‘~ j&)mh)dr 

-Jt 
(13) 

Since Q is not a function of x (the only heat 
addition is due to the line source, there being 
no other sources) the value of n is found. 

n = -3/5* (14) 
* For a constant flux plate Q must be proportioned to x, 

so n = l/5, the same value of n applies for a uniform plane 
source in the mid-plane of a plume. For an isothermal plate, 
n ia equal to 0. 
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With this value for n, equations (10) and (11) The constant C 1 is evaluated from the boundary 
become conditions (17), #‘(O) and f(O), as zero, and 

cp” + yPr(fi). = 0. (16) 

These equations for the plume are similar to 
those obtained by Schuh [S], Fujii [17] and 
others. A difference arises in the coefficients, 
because of a different choice of variables. 

Establishing boundary conditions for the 
plume flow equations (15, 16), now that the 
value of n is determined, is the last step in 
completely specifying the problem. The govern- 
ing equations require five independent boundary 
conditions. The bo~dary conditions for the 
line source plume can be generated from physical 
considerations as follows: The symmetry of 
the plume with respect to its mid-plane requires 
that (&/a&, = 0, v0 = 0, (&.@y), = 0, t = t,. 
The symmetry is seen in Fig. 5, each fringe is an 
isotherm. The above conditions, written in 
terms of the similarity variables are: 

and 

4’(O) =f”(O) =f(O) = 0 (17) 

(p(O) = 1. (18) 

Energy considerations require that all effects 
vanish at large values of g, i.e. u -+ 0 and 
t + t,. In terms of the dependent functions in 
this circumstance, we have 

f’(a) -+ 0, #(a) + 0. (19) 

The problem is apparently over-determined, 
there are too many boundary conditions. How- 
ever as will be shown, not all of these conditions 
are independent. 

The energy equation (16) is a perfect differen- 
tial and may be integrated once to give 

(p’ + 2.4Prf$ = C,. (20) 

QI’ = - 2.4prf: 
4 

Integrating again can get 

#(q) = 4(O) e-2’4 Pr%fdq 

where 4(O) = 1 from equation (18). Since f’ is 
positive and becomes constant for large q, 
the value of the integral is unbounded and 

lim b(q) = 0. (23) 
tl-n 

Therefore, the condition &co) -+ 0 is not in- 
dependent, but is implied by conditions used to 
evaluate constants of integration. As a result we 
,are free to choose the most convenient set of 
independent boundary conditions. 

The conditions ~(0~ = 0 and f(O) = 0 may 
not be used again since they have already been 
used to obtain (21). The remaining four inde- 
pendent boundary conditions, two at zero and 
two at infinity, are sufficient to solve the fourth 
order system of di~erential equations given by 
(15) and (21). However, this would be unwise, 
in the subsequent numerical solution since 
two missing conditions must then be guessed at 
zero in order to start the integration. The prob- 
lem could also be solved from the integro- 
differential equation resulting from (15) and (22), 
with boundary conditions 

f(0) = OJ”(0) = 0 and f”(a) --t 0. 

Still, two boundary conditions must be satisfied 
atin~nity,~dinaddition,theintegrod~erential 
equation causes difficulties in bo~da~ value 
problem solution. 

However, if one eliminates condition (23), 
there remain the necessary five conditions for 
(15) and (16). The problem remains a boundary 
value problem, but with only one condition to 
be met at infmity. This procedure represents 
an appreciable simplification and improvement 
in method over all previous treatments. 
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The above results are valid only for the plume 
arising from a line source and applicable to 
natural convection flow over a vertical adiabatic 
surface with a heat source concentrated at the 
leading edge, since only for n = -3 is the energy 
equation an exact differential. e 

The present boundary conditions and method 
of solution will be compared with those of 
previous studies. Since Fujii’s [17] work is the 
most complete and representative of past work, 
his boundary conditions will be presented 
and differences from them mentioned. The set of 
boundary conditions used by Fujii are : 

JyO) = ~~0) = @;cO) = 0 (24) 

f;(co) = &(W) = 0. (25) 

(27) 

Equations (26) and (27) are consequences of the 
conservation equations and of the boundary 
conditions peculiar to the plume problem. The 
latter differentiate the plume flow configuration 
from that over a heated vertical flat plate, for 
example. 

Since the method of solution presented in 
this paper does not employ any integral relations, 
e.g. equation (26) or (27), h3 perform integration 
of the governing equations, and since only one 
condition is lacking at 7 = 0 (to start the numeri- 
cal integration), the method of solution is clear, 
very simple, and efficient. 

The condition &co) = 0 carmot substitute a C. Evaluation of temperature, f7ow rate and 
condition for the temperature difference along velocity distribution 
the plume mid-plane. Therefore, Fujii had to By defining 
introduce the arbitrary no~a~tion : 

(26) 
equation (13) can be written as 

[on (6, in effect, since #(0) is not given], to define 
the problem. This was an ad~tional condition (29) 

imposed on the differential equations during the 
numerical integrations. Fujii stated that the 

Therefore, equation (7) is completely defined as 

theoretical or numerical calculations cannot be 
a function of fluid properties and heat generation 

performed without this condition. One would 
rate at the wire and by an integral of the functions 

infer that most earlier workers were of the same 
f’ and 4. The local temperature excess is given 

mind. by (9) as :‘, 

Schuh [S], Sevruk [13] and Brand and Lahey Q* 1 
[20] use the same five boundary conditions as t-t, =4-s z 

Fujii. Spalding and Cruddace [15], in solving 
[I p (SSP2P2Y 

x-* M) (30) 

the flow equations for temperature dependent and the mass flow rate in the plume is 

viscosity, arrive at a set of differential equations 
similar to Fujii’s. They neglected the condition 
that the normal velocity component is zero 
at the plume mid-plane but included condition 
(26), to define the problem. 

where J is the value of the integral 

Equation (26) is the condition of invariant 
thermal flux in the plume, note equation (13). J = _[ f’(v) drl. (32) 

Similarly, by equating the total rnorn~t~ in 
the plume with the total work done by buoyancy, 
the following relation results. 

Hence we conclude that the maximum tempera- 
ture in the plume decreases (at constant q) as a 
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minus three-fifths power of the height and that 0.8 

the mass flow rate increases at the same rate. 
The temperature level increases with four-fifths 0.7 
power of the total heat input and the mass flow 
increases only to the one-fifth. Viscosity. heat 
capacity, and density of the fluid have also 0.6 

strong influence on temperature distribution 
and mass flow rate. The vertical velocity 0.5 

component in the plume is 

f’ 0.4 

The horizontal component is 

v = 4’: Gr+, x ;.f(q) 

0.3 

0.2 (34) 

RESULTS AND CONCLUSIONS 

Extensive numerical calculations were carried 
out, in a Prandtl number range from 0.01 to 100, 
using the more direct formulation and procedure 
set forth above. The stream function is plotted 
in Fig. 2. The temperature distribution and 
vertical velocity component distributions are 

3.0 I I I 1 I ’ 

2.8 

2.6 

2.4 

2.2 

2.0 

I .8 

I.6 
f 

I.4 

I .2 

I.0 

0.8 

-0 I 2 3 4 5 
rl 

FIG. 3. Computed velocity profiles for a range of Prandtl 
numbers. 

0.6 

0.4 

0.2 

0 

plotted in Figs. 3 and 4. For plumes, as for 
convection flows developed over heated vertical 
plates, the thermal and velocity layers remain 
coupled in thickness for Prandtl numbers 
decreasing from 1 to values typical of liquid 
metals, in contrast to the analogous forced flow 
case. For increasing Prandtl number, above 1, 
the thermal layer becomes relatively much 
thinner than the velocity layer. The decreasing 
velocity levels in the plume, with increasing 
Prandtl number, are clearly seen in Fig. 3. 
Plume symmetry is apparent from the zero 
slopes at rl = 0 in Figs. 3 and 4. Numerical values 
of f’(0) and of I and J are given in Table 2. 
Indications of the thicknesses of the temperature 
and velocity boundary regions are also given 
in the table by values of q at #J(V) = 0.01 and at 

u/%lW = 0.01 =f’(q)fl’(O). 
Temperature and velocity distributions were 

0.1 

n 

compared and were in good agreement with 
those oresented by Fuiii r171. The maximum FIG. 2. Computed value offfor a range of Prandtl numbers. - “._A 
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FIG. 5. Interferogram of a plume formed above a heated wire in air. 
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-0 I 2 3 5 6 7 8 

FIG. 4. Computed temperature distribution for a range of 
Prandtl numbers. 

discrepancy in the values of 4 andfat the mid- 
plane was about 0.1 per cent. 

Figure 5 is an mterferogram of a plume in air, 
at 78°F and 1 atm, formed above a 0*005 in. dia 
heated wire of 6 in. length at a heating rate of 
54 Btu/h ft. The instrument is a 5 in. Mach- 
Zehnder interferometer with a Mercury vapor 
source filtered to the green line. The adjustment 
was to the infinite fringe, each fringe represents 
an isothermal contour. The constant for these 
conditions is 7.9°F per fringe. The lens system is 
conventional, i.e. not anamorphic, the distance 
scales are the same in both the X- and y-directions. 
The lines are a wire grid with vertical and 
horizontal spacing off and 4 in., respectively. 

The interferogram indicates clearly the extent 
of the thermal boundary region of the plume 
above the source. Since for a Prandtl number of 
0.7 the velocity and thermal boundary regions 
are of almost equal extent, the disturbed region 
seen is essentially the whole plume. 

For this plume the calculated local Grashof 
number at x = 2 in. is 1.7 x 106. The plume 
half thickness S, at x, divided by x is about 0.19. 
The nominal limit of the applicability of 
boundary layer theory is usually expressed as 
(6/x) $ 1. Now, since laminar plumes are 
thought, at least by the present writers, to be 
unstable at even lower local Grashof numbers 
than laminar flows over surfaces, it is apparent 

Table 2. Numerical values of computed parameters 

Pr 0.01 0.1 0.7 1.0 2.0 6.7 10.0 100.0- 

f’(0) 0.9751 OWl8 0.6618 0.6265 0.5590 04480 0.4139 0.2505 

4=001atq= - 1lQ 3.9 3.2 2.2 1.2 1.0 0.4 

/‘/f’(O) = 001 at TV = 14.6 9.3 41 3.8 3.7 4.1 4.3 5.6 

I - 3090 1.245 1.053 0.756 0407 0.328 

J 4.316 1,896 1.685 1.393 1.094 1.024 - 
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that higher order approximations should be 
made in calculating laminar plume flows. We do 
not at this time know, from experimental 

9. 

observations, the systematic deviations of actual 
plume flows from the predictions of simplest 
laminar boundary layer theory. These questions lo’ 
are under study and the first of our experi- 
mental investigations will appear in [22]. 11. 
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PANACHES PERMANENTS ET LAMINAIRES DE CONVECTION NATURELLE 
AU-DESSUS D’UNE SOURCE DE CHALEUR LIMAIRE HORIZONTALE 

R&umC-Les publications anterieures en nombre considCrable concernant le calcul du comportement 
des panaches de convection naturelle laminaire au-dessus de sources d’Cnergie, contiennent de nombreux 
Cltments d’incertitude et de confusion sur les variables convenables, lea conditions aux limites et les &qua- 
tions qui rtgissent les ph&nom&nes. Cet article, pour la premibre fois, pose le problbme avec les variables 
les plus simples, r&out les nombreuses redondances dans les conditions aux limites, et indique la faGon 
optimale de formuler ce problbme de valeurs aux limites. Les rtsultats des calculs numkriques sont donnCs 
sous la forme de la formulation simple actuelle pour une gamme &endue de valeurs du nombre de Prandtl, 
certaines n’ayant pas 8tt trait&s auparavant. Des rCsultats d’exp&riences avec des panaches sent inclus 
pour mettre en relief les diverses propritt&s de l’&oulement du panache et pour indiquer que la grande 
Cpaisseur de la rbgion front&e dans la gamme da panaches laminaires stables (c’est-g-dire, B des nombres 
de Grashof locaux relativement bas) encouragerait des calculs de 1’6coulement il des approximations 

d’ordre plus 6levC. 
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STATION~E, LAMINARE, FREIE KONVEKTI~N-GEBILDE I~BER EINER 
WAAGERECHTEN LININFORMIGEN WXRMEQUELLE 

Zusammenfaswng-Die zahlreichen Veriiffentlichungen liher die EIerechnung der laminaren Zel!str6mung, 
die sich durch freie Konvektion iiher Energiequellen ausbildet, enthalten viele Unsicherheiten und Un- 
klarheiten tiber geeignete Variable, Randbedingungen und geltende Gleichungen. In dieser Arbeit wird 
das Problem zum ersten Mal mit Hilfe einfacher Variabler formuliert; verschiedene tiberfltissige Rand- 
bedingungen werden beseitigt turd der beste Weg fiir die Behandlung dieses Randwertproblems wird 
gezeigt. Ergebnisse numerischer Rechnungen werden als Ausdriicke einfacher Formulierungen fiir einen 
grossen Bereich von Prandtlzahlen, von denen einige frtiher nicht behandelt wurden, angegeben. Ergeb- 
nisse von Experimenten mit solchen Strbmungszellen werden ebenfalls angegeben, um ihre unterschied- 
lichen Eigenschaften hervorzuheben und um zu zeigen, dass die grosse Dicke der Randbezirke im Bereich 
der stabilen laminaren Konvektionsformen (z.B. bei relativ kleinen lokalen Grashofzahlen) zu einer 

Berechnung der Striimung mit NRherungen h6herer Grdnung ermutigen sollte. 

CTALJMOHAPHAFI JIAMkIHAPHAR CBOBOAHAFl ICOHBEK~BfI HAA 
I’OPB30HTAJIbHbIM JIkiHEmHbIM llCTO=IHBKOM TEI-fJIA 

AIUIOTB~EJI-B KMeromKxCfr MHOrOwCneHHbrX ny6nriKanrrnx no pacsery rraurinapnnx 
CTpj-eK WTeCTBeHHOti KOHBeKQEiEi HPR HCTOYHBKaMH EGIeplWi CO~t-?P?KHTCR MHOl-0 HNICHOFO 

H IIpOTHBOpWIHBOl-0 B OTHOIIN?HElH COOTBCTCTBJW~HX IIf?peMeHHblX, lJNIH119HhIX YCJlOBEit H 

OCHOBHblX ypaBHet?Eiti. B AaHHOti CTaTbI? BIIepBbF.3 CTaBEITCIl L?aAaYa B uan6onee npOCTbIX 
nepeMeKHbrx,pa3peuraroTcK pa3rrKsHbJe K~~~~TOYHOCTK rpaHrirHbrx yC~10BIlfi K yKa3nBaeTcK 
Ha 0nTKManbBbrH cnoco6 @~~M~JG~~OBKH 3~0t rpaHKrHofi aa,Bawi. PesynbTaTbr uKcneHHbrx 
pacKeToB BbrpaHcaroTcff uepea gaHHyr0 +0p~y~Kip0BKy garr mKpoKor0 gBana3oHa 3HaseHBP 
KpHTepBR UpaHgTJW, HeKOTOpbre K53 KOTOpbJX paHee He paCCMaTpBBaBKCb. PeaynbTaTbr 
3KCnepaMeHTOBCOCTpy~KaMllBKJIH)9eHbIC~eJIbH)nOA~epKHyTbpaanElYHbIeCBO~CTBaCTpyeK 
II yKasaTb,yTO 6onburan TOJrmMHa nOrpaHUuHOfi o6nacTK B gManaaOHe CTa6Kn'bHbrX naMK- 
HapHbIXCTpyeK(T.e.npHOTHOCIlTenbHOHKaKIlXnOKaJIbHbIXaHa~eHElKX KPHTePliR rpaCrO+a) 

~OJIWHZI CIIOC06CTBOBaTb IIpOBegeHBH, paCYeTOB nOTOKa C IIOMOmbH) annpOKCHMar@ 
Bbrcurero nopnnKa. 


